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TIME-DEPENDENT LIQUID METAL FLOWS WITH FREE 
CONVECTION AND A DEFORMABLE FREE SURFACE 

MATTHEW A. McCLELLAND 
Lawrence Livermore National Laboratoy, Livermore, CA 94550, US.A. 

SUMMARY 

The finite element method is employed to investigate time-dependent liquid metal flows with free convection, free 
surfaces and Marangoni effects. The liquid circulates in a two-dimensional shallow trough with differentially 
heated vertical walls. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, 
pressure, temperature and free surface position. The time integration is performed with the backward Euler and 
trapezoid rule methods with step size control. The Galerkin method is used to reduce the problem to a set of non- 
linear equations which are solved with the Newton-Raphson method. Calculations are performed for conditions 
relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0.015 and Grashof number 
are in the transition range between laminar and turbulent flow. The results reveal the effects of flow intensity, 
surface tension gradients, mesh refinement and time integration strategy. 
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1. INTRODUCTION 

Time-dependent liquid metal flows are important in a wide variety of industrial applications. One 
process of interest is the electron beam vaporization of refractory metals. In this process an electron 
beam is used to heat metal confined in a crucible with a cooled wall (see Figure 1). A fraction of the 
energy is used to vaporize the metal, while the balance skips to a beam dump, radiates to the 
surroundings and conducts to the crucible wall. A liquid pool forms in the region where the beam 
strikes and it circulates as a result of buoyancy and capillary forces. The flow is always time-dependent, 
located in the transition region between laminar and turbulent flow. At high vaporization rates a 
depression or ‘trench’ forms from the thrust of the departing vapour. Transport phenomena in the 
trench and pool strongly influence the vaporization rate and vapour properties. Other features of this 
process along with factors relating to design and implementation are discussed by Hill.’ 

Time-dependent liquid metal flows are also encountered in crystal growth, welding and metal- 
casting systems. In crystal growth, convective flow transitions from steady laminar to periodic and 
chaotic flows can significantly alter the solidification and final microstructure of the crystal. For 
welding operations the flow characteristics of the liquid metal pool affect the shape and quality of the 
weld. Flow patterns in metal moulds play a role in the end-use properties of the cast product. 

In all the above systems the transport of mass, momentum and energy is coupled with moving phase 
boundaries. In addition, system behaviour can be influenced by thermal radiation and interaction with 
vapour or gases. The transport phenomena in these systems have been investigated to varying degrees. 
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vapor 

Figure 1. Electron beam vaporizer for metals 

Several literature reviews are available for crystal growth The results of more recent 
investigations involving computer modelling were presented at a NATO workshop.6 Studies of weld 
pool systems have been made by Tsai and Kou,~  Zacharia et a1.' and Choo and Szekely.' Recent 
investigations of transport phenomena in metal casting have been made by Mishima and Szekely," 
Dhatt et al. and Song et al. l 2  For electron beam vaporization an analysis of flow and heat transfer was 
made by Kheshgi and Gresho.13 

Most computational approaches have been directed towards flow with rigid liquid-gas interfaces, 
while relatively few have treated deformable interfaces. Transient liquid metal flows in rigid domains 
were simulated in early studies by Jonesi4 and Benocci." Gresho and Upson16 analysed free 
convection in a square cavity and Mohamad and Viskanta17 extended these results to determine critical 
values for the Grashof number and frequency at the onset of oscillatory flow. A number of 
investigators3" 8-22 have calculated time-dependent, two- and three- imensional flows in idealized 
crystal growth systems consisting of rigid cylinders. 

Attention has also focused on buoyancy-driven flows in shallow two-dimensional cavities with 
vertical walls maintained at different temperatures. Crochet et al.23,24 applied finite difference and 
finite element methods to obtain steady state and time-dependent solutions. Winters2' used a 
perturbation method with finite elements to determine critical conditions for the onset of oscillations. 
In a GAMM the performance of numerical methods was compared for flows in the 
vicinity of this transition point. With sufficient resolution in space and time, there was good agreement 
for such variables as the critical Grashof number and frequency. 

Steady state liquid metal flows with deformable free surfaces have been investigated in a few 
studies. Brown and c o - w o r k e r ~ ~ ~ ~ ~ ~  used the finite element method to analyse Czochralski crystal 
growth systems with deformable liquid-gas and liquid-solid interfaces joined at a tri-junction. Tsai 
and K0u7 employed the SIMPLE algorithm with deforming orthogonal curvilinear co-ordinates to treat 
the liquid-gas interface in a weld pool. In their analysis the solid-liquid interface was handled using a 
mushy zone. 

Temperature-induced Marangoni effects were also included in two of these steady state analyses 
involving deformable free surfaces. In the analysis of Czochralski crystal growthz8 the Marangoni 
effect greatly accelerated the flow, forming a thin boundary layer and significantly changing the shape 
of the free surface. In the absence of buoyancy forces, changing the sign of the Marangoni effect 
significantly changed the shape of the weld po0L7 
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For liquid metal flows in rigid containers, Marangoni effects have been incorporated in many steady 
state simulations but far fewer time-dependent calculations. Ben Hadid and Roux3' calculated results 
for flow in a rigid rectangular cavity under conditions near the transition point between steady state and 
oscillatory flow. They found that the Marangoni effects tends to stabilize the flow for both positive and 
negative contributions, except for a narrow negative range. Villers and Platten3' give results for the 
same flow system that also show stabilization for positive contributions of the Marangoni effect. 

In this study we investigate the flow in a shallow two-dimensional trough with differentially heated 
side walls (see Figure 2). Temperature-induced Marangoni effects are included at the deformable top 
free surface. This surface is treated numerically using the methods developed by Kistler and S ~ r i v e n ~ ~  
for steady state coating flows. A similar approach was employed by Brown et a1.28 and Sackinger et 
~ 1 . ~ ~  in the finite element analysis of Czochralski crystal growth. The time integration is performed 
with the trapezoid rule developed by Gresho et ~ 1 . ~ ~  and applied to free surface flows by Kheshgi and 
S ~ r i v e n . ~ ~  Results are obtained for flow intensities as large as those observed in e-beam vaporizer 
pools and they reveal the effects of mesh and time step refinement. 

2. BASIC EQUATIONS 

2.1. Equations of change 

We investigate a Newtonian liquid that has constant bulk properties, except for the density which 
varies linearly with temperature according to the Boussinesq approximation. The scaled mass, 
momentum and energy equations are 

v = V  = T n O  V x 1 V  1 0  

Y T.4 

U 7 

o x  4 

v = V  10,T.x 
X Y  

Figure 2. Co-ordinates and boundary conditions for flow in a rectangular trough. Point A is located at x = 0.8 andy= h. Point B is 
located at x = 0.08 and y = h 
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Gr’I’Pr - + v  VT = -V - q. (: * ) (3) 

The total stress tensor IT and heat flux vector q are given by 

IT = p6 - [ v v  + ( V V ) + ] ,  (4) 

q = - V T .  ( 5 )  

The scaled variables are given by 

t = t+vs/hs,  x = x+/h , ,  v = v + / v , ,  

‘TT = ‘li+hS/POVS, P = P+hS/POVS, ( 6 )  
T = (T’ - To)L/hs(T1 - To), q = Q + ~ / [ k o ( T l  - To)],  

in which ‘pluses’ denote dimensional variables. Here L is the length of the trough and h, is a 
characteristic depth of the liquid, which is taken to be L14 for the cases described below. Also, To and 
TI are the dimensional temperatures at the boundaries x = 0 and x = 4 respectively. The properties po 
and ko are the viscosity and thermal conductivity evaluated at TO. Avelocity standard is obtained from a 
characteristic balance of buoyancy and inertial forces: 

V ,  = N TI - T O ) ~ ~ ~ / L ] I / ~ .  (7) 

Here B is the volumetric thermal expansion coefficient. The dimensionless groups are 

in which vo and a0 are kinematic viscosity and thermal difisivity evaluated at To. Note that the 
Reynolds, Peclet and Rayleigh numbers are related to the Grashof and Prandtl numbers by Re = Gr’”, 
Pe = Gr’I2 Pr and Ra = GrPr. 

2.2. Boundary and initial conditions 

The problem statement given by equations (1H3) is completed with the specification of boundary 
and initial conditions for the free convection system of Figure 2. The kinematic condition is the 
statement that no liquid penetrates the liquid-gas interface: 

ax 
at 

n. - = n * v  a t x = X .  (9) 

Here X and n are the respective position and normal vectors for the liquid-gas interface. For the trough 
of Figure 2, equation (9) takes the form 

dh ah 
- vy - v,- 

at ax 
- a ty  = h, - 

in which v, and vy are components of the velocity vector. 
For steady state calculations an additional boundary condition must be specified for the variable h. 

One possibility is to set the total mass of liquid in the trough. In order to use this condition, the 
numerical solution method described in the next section would have to be modified to treat partially 
banded Instead we use 

h = l  a t x = 4 ,  ( 1 1 )  
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which is more easily implemented and provides similar results. For transient cases the contact line is 
able to move and equation (1 1) is not applied. 

At the free surface between the liquid and gas, which is to a good approximation inviscid and 
inertialess, a force balance gives37 

in which s is the unit tangent vector, s is the distance measured along the interface in the direction s and 
dslds is the curvature of the interface (see Figure 2). Also, CT is the surface tension and the capillary 
number is given by 

POVS Ca = - 
0 0  

In the development of equation (12) the ambient gas pressure is taken to be negligible. The first term 
on the right-hand side is the normal component resulting from surface curvature. The second term is 
the tangential component resulting from gradients in the surface tension. If the surface tension is a 
linear function of temperature, equation (1 2) becomes 

For the normal component the effects of surface tension gradients are assumed to be of lesser 
importance (dao M 1). In the tangential component the Marangoni number is a characteristic ratio of 
surface tension gradient forces to viscous forces: 

Note that this definition, which is of the form Ma = (-da1dT)AT lpv,, differs from two other more 
commonly used definitions: Ma, = (-dddT )LSATlpv2 and Ma, = (-da/dT)L,AT/pva. Here AT and 
L, are standards for the temperature difference and length scale respectively. 

For steady state cases a contact angle 8, is specified at each of the two static contact lines where 
liquid interfaces intersect the solid walls (see Figure 2): 

n, - n = cos 8, at x = 0 andy = h, (16) 

n , . n=cos  8, a t x = 4 a n d y = h .  (17) 
Here nw is the inward-pointing normal vector for the trough wall. For time-dependent cases the contact 
line moves and there is less certainty in the choice of boundary  condition^.^^ For these cases we also 
use equations (1 6) and (1 7) and employ 8, as an apparent dynamic contact angle. The no-slip condition 
is employed at the three solid boundaries, which is valid except near moving contact lines (see Figure 
2). At these lines there is an apparent stress singularity which can be treated by introducing a slip 
condition of some type.32 Possibilities include a specified slip velocity, slip by discretization and 
Navier’s mixed condition. In this work the no-slip condition is applied at all solid boundaries and slip 
by discretization is used. Navier’s mixed boundary condition is physically more reasonable but 
involves the use of a slip coefficient. The thermal boundary conditions are specified temperatures at 
each of the boundaries. Different temperatures are maintained at each of the vertical walls and linearly 
interpolated temperatures are used at the other two boundaries. For time-dependent cases the problem 
statement is completed with the specification of an initial condition which is a steady state solution at a 
lower Grashof number. 
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3. NUMERICAL METHOD 

3. I .  Spatial discretization 

The equations of change ( 1 x 3 )  and associated boundary conditions are discretized in space using a 
mixed finite element basis set and Galerkin method. The velocity, pressure and temperature are 
represented by Lagrangian linear and quadratic polynomials: 

N N 

T = c T'@'(x, y ) ,  
i =  1 i =  1 

N" 

j =  1 

N h  

h = c h k @ k ( X ,  h ) .  
k =  1 

We employ nine-node biquadratic polynomials Oi for the velocity and temperature, four-node bilinear 
polynomials T'(x, y) for the pressure and three-node quadratic polynomials Ok(x, h) for the pool depth. 
The total number of nodes is denoted by N, while Np and Nh are the number of pressure and surfaces 
nodes respectively. It is noted that this representation of the field variables is generally satisfactory. 
However, in the case of strong convection and marginal spatial resolution, superior performance could 
be achieved with linear polynomials for v, T and h and a piecewise constant pressure33 or penalty 
formulation for the pressure.38 Other possibilities include quadratic representations of v, T and h 
combined with discontinuous linear interpolation of the pressure to yield element level mass 
balances.29333 

The Cartesian co-ordinates (x, y) are related to local elemental co-ordinates (l ,  q)  through a 
Lagrangian isoparametric mapping: 

0 0 

For the flow of Figure 2 the grid is 'stretched' linearly in the y-direction as the free surface moves. The 
motion of an interior node is given by 

in which the subscript '0' denotes a quantity for the unstretched mesh. 

derivatives in fixed co-ordinates are written in terms of quantities that move with the mesh:34 
For the conversion of the equations of change ( 1 x 3 )  into Galerkin residual expressions, the time 

Here i, is the velocity of a point which moves with the mesh: 
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The residual expressions are formed for the equations of change (1 H3). The continuity equation is 

(23 ) R, = S, rjv v d~ = 0, 

in which j =  1, .608.608.608, Np. The residual expressions formed from the momentum and energy 
equations are written in the weak form. In this transformation the stress and heat flux terms are 
integrated by parts. In terms of variables that move with the mesh (dropping the subscript 'm'), the 
residuals for the momentum and energy equations are 

in which i =  1, .608.608.608, N represents the residual equation for each node. 
The residuals for the kinematic boundary condition (9) are given by 

with k = 1, .608.608.608, Nh.  The free surface boundary term for the momentum residual is 
evaluated with the use of equation (14). The term involving Cu is integrated by parts to eliminate the 
surface curvature & / a s  in favour of the unit tangent s:39 

Here so and s1 are the unit tangent vectors along the free surface evaluated at x=O and x = 4  
respectively. However, at contact lines the no-slip condition is applied and equations (24) and (27) are 
not used as written. The contact angle conditions (16) and (17) are imposed in their natural form by 
replacing the kinematic residuals (26) by32 

no - RM = 0 atx = 0 andy = h, (28) 

nO*RM=O a t x = 4 a n d y = h ,  (29) 

Here no is the vector n that satisfies equation (16) or (17). The momentum residual (24) includes 
equation (27) without the terms involving so and sl. In the absence of the kinematic conditions the 
contact lines are able to move even though no-slip conditions are applied at all locations along the 
walls. This is the method of slip by discretization mentioned above. Finally, for steady state cases the 
surface boundary condition (1 1) is applied as an essential condition in place of the continuity residual 
(23) at the location (x=4, y =  0). This has the same effect as adjusting a nodal pressure to set the fluid 
level in the trough. 

The boundary conditions described above are shown in Figure 3 for a two-element mesh. Except for 
the pressure condition at node 9, all conditions apply to both steady state and transient cases. 

For the cases described below, three meshes of differing refinement are used which are symmetric 
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nodes 

2, 8. 10, 12 5s. t 

Variables 

s c e k  

e h e -  

e c e -  

Figure 3.-Variables and conditions for boundary nodes in a two-element mesh: 0, contact angle condition (28) or (29); 
c, continuity equation (23); k, kinematic condition (26); h, height condition (1 1); e,  essential condition; ss, steady state case; 

s, surface condition (27); t, time-dependent case 

about the lines x = 2  and y=O*5 (see Figure 4). For the unstretched mesh (h = l), element boundary 
locations in the quadrant (0 < x < 2, 0 < y < 0.5) are given by 

1 I - exp(2i/ne,,) 
1 - exp(1) , i = 1, 2, . . .  , ne,,/2, ' 0  = Z 

in which ne,609x and ne,609y are the numbers of elements in the x- and y-directions. 

3.2. Time integration method 

The discretized equations of change (23)-(26) are integrated in time using the trapezoid rule (TR) 
and backward Euler (BE) methods with automatic error For each of these methods a local 
integration error e is calculated at each time step based on the difference between a predicted solution 
Z, given by an explicit method and a corrected solution Z, calculated by an implicit method. The 
square-root norms for the two methods are given by 

The time step is adjusted for the next step based on a comparison between this error and a user- 
specified tolerance E.  In this work we generally use E = 1 x lop3, except in a few cases for which we 
employ E =  1 x to examine the effects of time step refinement. 

Figure 4. Unstretched 32 x 12 finite element meshes for natural convection in a rectangular trough (5369 unknowns). Element 
locations are given by equation (30). Meshes not shown: 48 x 18, 11,795 unknowns; 64 x 24, 20,717 unknowns 
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The non-linear algebraic equations are solved for v, p, T and h using the Newton-Raphson method, 
which linearizes the equations. The development and assembly of equations follow the approach 
employed by Kistler and S ~ r i v e n ~ ~  and extended for transient problems by Kheshgi and S ~ r i v e n . ~ ~  The 
linear equation set is solved at each iteration or time step by Gaussian elimination. A modified frontal 
solver is employed which is based on the one given by For the 64 x 24 mesh a single time step 
required 0.9 h of CPU time on a DECstation 3 100. 

The TR method is used in most cases since it is more accurate and non-dissipative. The BE method 
is used as a starting method for the TR method. It is also employed during the initial stages of 
calculations to damp spurious oscillations resulting from sudden changes in conditions. 

4. RESULTS 

Steady state and time-dependent solutions are presented for the natural convection system of Figure 2. 
The length of the trough is varied while the aspect ratio Llh, is held constant at 4. A constant 
temperature difference TI- TO = 1000 "C is applied which is representative for the electron beam 
vaporization of refractory metals. A model refractory metal is investigated which has the following 
properties: 

po  = 3 x kg m-' s-', = 1 x 1 0 - ~  O C - ~ ,  po = 1 x 10 4 kgm-3, 

010 = 2 x m2 s-l, a0 = 1.25 Nm-' ,  - 1.5 x lop4 N m-l OC-' 5 da/dT 5 0. 

A range of values for daldT is considered given the variations which may result from surface 
~ontamination.~~ The contact angle is taken to be 8, = 90". For these properties and flow conditions the 
dimensionless groups of equations (8), (13) and (15) are written as hnctions of Gr: 

St = 0.025Gr-'/2, Pr = 0.015, Ca = 1 x 10-5Gr'/6, 0 5 Ma 5 3 x 103Gr-'/6. (33) 

The Grashof number is varied from 1 x lo4 to 1 x lo6, which overlaps the range 
1 x 1O5<Gr<l x 10' for electron beam vaporization of metals. The above value for Pr was used in 
previous  investigation^.^^-^^ The respective increase and decrease in Ca and Ma with Gr reveal that the 
relative importance of capillary effects decreases with trough size. 

4.1. Tests results for flow in a rigid cavity 

In order to test the performance of the numerical scheme, a number of calculations were obtained for 
flow in a rigid cavity with h = 1. For Gr = 1 x 1 04, Ma = 0 and steady state conditions a value for 
I$lrnax is compared with a reference solution calculated by Behnia and de Vahl Davis.43 The value for 
the 64 x 24 mesh agrees exactly with the reference value of 0.5529 to the indicated accuracy. 

Transient calculations were performed for Gr = 1 x 1 O4 and Ma = 0 using the 32 x 12 mesh with the 
TR method and E =  1 x lop4. This value of Gr is close to the value of 1.49 x lo4 calculated by 
Winters25 for the onset of oscillatory flow. The calculated frequency of 0.663 compares quite well with 
the value of 0.664 obtained by Winters. Additional comparisons are given elsewhere.44 

4.2. Steady state results with a deformable free surface 

Steady state streamlines and temperature contours are shown in Figure 5 for the 64 x 24 mesh with 
Gr = 1 x lo5 and 1 x lo6 and Ma = O  and 160. For the cases with Ma=O there are three cells with 
counterclockwise circulation, while there is only one cell with strong circulation for Ma = 160. In the 
latter case, flow velocities are high in this cell and near the free surface but relatively low elsewhere. 
For all cases, the curvature of the isotherms reveals that the contribution of thermal convection is 
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li.. Gr=lx105, M a = O  T, Gr=lx106, Ma=O 

+. Cr=lxlO', M a = O  T, Cr=lxlO*, Ma=O 

ik, Gr=lxlOS,  Ma=160 T. Gr=1x106. Ma=160 

Figure 5. Steady state streamlines and temperature contours for the 64 x 24 mesh. Sf, Cu and Pr are given by equation (33). 
Twelve equal increments in $ for Ten equal increments in T for 0 5 TI 4. The streamlines are calculated using 

the procedure of Appendix I 
5 $ 5 

moderate. The free surfaces are nearly horizontal, indicating large gravitational and surface tension 
components. Slight depressions are visible near regions where the streamlines are closely spaced. This 
suggests some type of Bernoulli effect in which a high velocity is associated with a low pressure and a 
depression in the free surface. 

The smooth streamlines and temperature suggest that the spatial resolution provided by the 64 x 24 
mesh is adequate. A mesh refinement study45 reveals small differences in a surface velocity component 
Vx.61 1A for Gr= 1 x lo5. In the case with Gr= 1 x lo6 a converged solution was found for the 64 x 24 
mesh alone. In principle, steady state solutions can be calculated at larger values of Gr and Mu with 
additional mesh refinement.25 However, it is likely that the above steady state solutions are unstable to 
small disturbances. Although not done here, the stability of each steady state solution could be 
established by performing a time-dependent simulation. For time variations of constant or increasing 
amplitude the steady state solution is unstable. 

4.3. Time-dependent resultsfor Gr = 1 x lo6 and Ma = 0 

Time-dependent calculations were performed for Gr = 1 x lo6 and Mu = 0 with the other 
dimensionless groups given by equation (33). The initial condition is a steady state, creeping flow 

9, t=13.0 T, t=13.0 

$, t=14.0 $I. t=15.0 

Figure 6. Time-dependent streamlines and temperature contours for Gr= 1 x lo6, MQ=O, Cu= 1 x St=2-5 x lo-', 
Pr= 0.015,64 x 24 mesh, with TR and E = 1 x Twelve equal increments in $ for $min 5 $ 5 $max. Ten equal increments in 

T forO5T14 
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Figure 7.-Time step size and pool depth at location A versus time for Gr= 1 x lo6, Mu=O, Ca= 1 x Sr=2.5 x lo-’ and 
Pr=O,O15. Note that hA and vx,613A curves for48 x 18 mesh coincide.- ,64 x 24 TR, & =  1 x l o + - - ,  48 x 18, 

TR, & =  1 10-3.. . . . . , 3 2 ~ 1 2 , T R , e = l x 1 0 - ~ ; - * - * - , 4 8 x  1 8 , T R , & = l x  

solution. All dimensionless groups for this initial condition are the same as those for the simulation, 
except for Gr which has the value of 1 x lop4. A sequence of streamfunction and temperature contours 
is shown in Figure 6 for the 64 x 24 mesh. The flow and temperature fields are well resolved, since the 
contours are smooth. The flow is quite complex, with at least three cells present at any instant in time. 
As time progresses, two large cells with rapid counterclockwise circulation merge. 

The effects of mesh and time step refinement are shown in evolutionary plots of At, hA, and Vx,612A 

(see Figure 7). Results for four cases are shown in which three meshes and &-values of 1 x loT3 and 
1 x lop4 are used. Given the large amount of computing time required to reach a quasi-steady state, 
the case with E =  1 x and the 48 x 18 mesh was started at t = 13.0 and concluded at t = 16.6. The 
solution for the 48 x 18 mesh and E = 1 x lop3 was used as an initial condition at t = 13. 

In the flow development period (0 5 t 5 10) the flow intensity is relatively small and values for At 
are large (see Figure 7). The initial disturbance generates oscillations in hA with a frequency of 
approximately 0.75. The velocity V,,612A increases in magnitude and oscillates with nearly the same 
frequency. The effects of mesh refinement are small for this interval. 

It is of interest to compare the frequency of oscillation for gravity-driven surface waves in a two- 
dimensional, 4 x 1 trough. For these waves Lamb46 gives the dimensional frequency for the primary 
mode as 

*’ = (4nL coth(nhs/L) ) ‘ I 2 .  (34) 
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This expression is rewritten in terms of the dimensionless variables and groups of equations (6) 
and (8) as 

= (4nLGr””Sr hS coth(nh,/L) ) l f 2 .  (35) 

Insertion of the case expressions (33) gives the following frequency which does not depend on Gr: 

f613 = 0.722. 

This result compares fairly well with the value of 0.75 given above, which suggests that the initial 
oscillations of Figure 7 are driven primarily by gravity. 

For t >  10 the flow intensity increases and values for At are much smaller (see Figure 7). The 
gravity-driven oscillations are still evident in the curves for hA. Also present are components of higher 
and lower frequency. The lower-frequency variations are associated with the global rearrangement of 
cells (see Figure 6). Higher-frequency fluctuations are present for t > 20. However, the results for this 
interval were only calculated with the 32 x 12 mesh and would have to be verified by extending the 
results for the finer meshes. The velocity V,,613A exhibits large variations as the arrangement of cells 
changes (see Figures 6 and 7). In addition, the regular pattern of oscillation observed in the flow 
development period (0 5 t 5 10) is much less evident. 

During the interval of high flow intensity the effects of mesh refinement are more important than 
time step refinement. As the mesh is refined, time steps are larger as spurious oscillations are reduced 
(see Figure 7). Although it is apparent that very fine meshes are necessary to resolve all the features of 
the flow, the character of the flow is captured with all three meshes. As E is reduced from 1 x lop3 to 
1 x for the 48 x 18 mesh, At decreases by approximately a factor of two. This result is consistent 
with the scaling relationship At - E ~ ’ ~  for the TR predictor-corrector method.33 The decrease in E 

results in very small changes in the curves for hA and vx, A. As a final measure of solution accuracy, the 
total mass in the system changed by 0.0023% over the course of the simulation for the 64 x 24 mesh 
with E =  1 x 

4.4 Time-dependent resultsfor Gr = I x lo6 and Ma = 100 

Time-dependent results were obtained for Gr = 1 x lo6 and Ma = 100 with the other dimensionless 
groups given by equation (33). The initial condition is a steady state solution for the same trough 
containing a liquid metal with a viscosity larger by a factor of 10. The dimensionless groups for this 
solution are Gr = 1 x lo4, Ma = 10, Ca = 1 x St =2.5 x lop4 and Pr =0.15. The creeping flow 
solution for the previous case with Gr = 1 x lo6 and Ma = O  is not used with the very strong surface 
Marangoni effect, which immediately accelerates the fluid near the free surface. In the presence of this 
surface effect it was felt that the flow could be developed more efficiently with an initial condition 
closer to the final condition. This contrasts with the previous case (Ma=O) in which the flow is 
accelerated by a body force that is of the same scale across the flow domain. 

In the simulations performed, the BE method was employed to varying degrees to improve the 
calculation efficiency during the flow development interval. From t = 0 to a time denoted by tl,  the BE 
method was used to damp localized oscillations associated with the initial shock and development of 
the thin momentum boundary layer at the free surface. For the balance of the simulation (t > tl) the TR 
method was applied. In one simulation the 64 x 24 mesh was used with t l= 1 * 1, while in three other 
calculations the 48 x 18 mesh was employed with tl=4 x lop5, 0.01 and 1 . 1 .  In all cases four BE 
steps of size 1 x lop5 were initially taken.34 The values for tl can be related to the time for 



TIME-DEPENDENT LIQUID METAL FLOWS 615 

development of a flow boundary layer. A developed boundary layer has a characteristic thickness 
6 , - ( v h I ~ , ) ” ~  and a development time 6i /v .  Applying the variables of equation (6) gives unity as the 
characteristic boundary layer development time. 

A sequence of streamlines and temperature contours is shown in Figure 8 for the 64 x 24 mesh and 
tl = 1.1. The closely spaced streamlines near the free surface indicate a thin boundary layer and strong 
acceleration. At each time there are two primary cells with counterclockwise circulation. Although 
other smaller cells form and disappear, the basic appearance of the flow field remains unchanged. This 
result is attributed to the stabilizing influence of the Marangoni effect. The temperature contours reveal 
a thermal convection component of moderate strength. 

The smooth streamlines and temperature contours suggest that the 64 x 24 mesh is sufficiently fine 
to resolve the flow and temperature fields. Also shown in Figure 8 are streamlines at t = 6 for the 
48 x 18 mesh with tl = 0.01 and 1 * 1. There are some indications of inadequate spatial resolution in the 
region between the two primary cells, but in general the streamlines are similar to those for the 64 x 24 
mesh. 

The variables At, hA, and \?r,614A are plotted versus time in Figure 9 for the four cases described 
above. A fourth variable Vy,614B is also shown which is particularly sensitive to flow fluctuations near 
the downstream contact line (see Figure 2). There is a flow development period (OIt14) in which 
values for At are generally larger than the later quasi-steady state values. During this development 
interval there is a jump in At for each curve at t = t l  as the BE method is switched to the TR method. 
This jump size increases dramatically with tl ,  but does not depend strongly on mesh size. During the 
flow development period, values for At are generally larger as t1 is increased. It is apparent that 
extended use of the BE method can be of significant computational benefit. Although not done here, it 
is likely that a value of tl  can be found that makes the best use of the damping properties of the BE 
method and the inherent efficiency of the TR method. 

During the flow development period the flow intensity is relatively small and the changes in h~ and 
vx,614A are gradual (see Figure 9). The results for these variables do not depend strongly on mesh size 
or the value for t l .  After flow development, higher-frequency components appear in the curves for h A  

and VX,614A. For the 48 x 18 mesh with t l  =0.01 and 1.1 the curves are similar until t =6, at which 
point the differences grow. For the 64 x 24 mesh the fluctuations are smaller and less frequent, 

11.. 64x24, t ,=l  1, t=60 T, 64x24, t , = l  1. t=60  

II.. 48x18, t,=l 1, t=6.0 11.. 64x24. t , = l  1, t=7.0 

11., 64x24 t ,=l  1, t=80 II., 48x18. t ,=001,  t=60 

Figure 8. Time-dependent streamlines and temperature contours for Gr= 1 x lo6, Mu= 100, Cu= 1 x St=2.5 x lo-’, 
Pr=0.015, 64 x 24 mesh and E =  1 x lo-’. Twelve equal increments in I) for I),,,,,, 5 I) 5 I),,,=. Ten equal increments in T for 

O < T 5 4  
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Figure 9. Time step size, pool depth and v, at location Aversus time for Gr = 1 x lo6, Ma = 100, Cu= 1 x S f = 2 . 5  x lo-’ 
and Pr= 0.015.- ,64 x 24, t l =  1.1; ---, 48 x 18, ? I =  1.1; * * * * a ,  48 x 18, t l = O . O I ;  - - -. -, 48 x 18, tl = 4  x lo-’ 

indicating that some of those for the 48 x 18 mesh are spurious. None the less, the important low- 
frequency variations are captured fairly well in all cases. 

The question arises as to why the extended use of the BE method during flow development provides 
such large improvements in numerical efficiency. The curves for hA and V,,615A do not provide obvious 
clues since they are similar for all cases. An examination of curves for Vy,,615B provides some insight 
(see Figure 9). For tl=0.01 and 1-1, Vy,615B increases monotonically after a small oscillation. In 
contrast, small-amplitude oscillations are observed for the case tl = 4 x 1 O-’. These localized 
oscillations are the result of the sudden change in flow conditions at the beginning of the calculation. It 
is evident that application of the BE method with t l  2 0.01 damps these oscillations. Noting the much 
larger values of At, it is apparent that extended use of the BE method during start-up can greatly 
improve numerical efficiency with a small loss in physical detail. 

It is useful to compare these results with those for the previous set of simulations in which 
Gr = 1 x 1 O6 and Mu = 0. For both Mu = 0 and 100 there are generally two primary cells with strong 
circulation (see Figures 6 and 8). For Mu = 100 a thin boundary layer is formed by the strong shear 
force present at the free surface. Observing that the overall changes in the flow pattern are less 
pronounced for Mu = 100, it seems that the Marangoni effect stabilizes the flow despite the 
accompanying increase in flow intensity. This stabilization is also seen in the variable vx,615A, which 
exhibits fluctuations of much smaller amplitude for Mu = 100 (see Figures 7 and 9). 

5. CONCLUSIONS 

The key results of this analysis are numerical solutions for time-dependent liquid metal flows with free 
convection, free surfaces and Marangoni effects. Flow intensities overlap the range corresponding to 
pool flows in electron beam vaporizers. The spatial discretization is accomplished using the Galerkin 
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finite element method and the time integration is performed using the backward Euler method and 
trapezoid rule with step size control. This approach provides for the completely implicit solution of the 
equations of change. The trapezoid rule is employed in the majority of situations, while the backward 
Euler method is used to damp localized oscillations associated with initial shocks and boundary layer 
development. 

Flow intensities are large and rearrangements in the flow pattern are dramatic for the time-dependent 
flow dnven by buoyancy forces alone (Gr= 1 x lo6, Mu = O ) .  For this case the effects of mesh 
refinement are much more important than time step refinement. The finest mesh appears to adequately 
resolve the flow, while the coarser meshes produce spurious oscillations but still capture the important 
features of the flow. 

For the time-dependent case involving buoyancy and Marangoni forces (Gr= 1 x lo6, Mu = loo), 
the flow intensity is larger, but the rearrangements in flow pattern are less pronounced when compared 
with the case with Mu = 0. This apparent stabilization is attributed to the strong shear force present at 
the free surface. The effects of mesh refinement are significant, but the finest mesh seems to 
adequately resolve the flow. With some loss of detail, the extended initial use of the backward Euler 
method significantly improves the calculation efficiency. 
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APPENDIX I: CALCULATION OF STREAMLINES 

The streamfunction $ is calculated as the solution to a Dirichlet problem 

in which the boundary condition is obtained by evaluating the integral4’ 

(A37) 

Here v is the solution to the flow problem and $o is an arbitrary constant taken to vanish at the origin. 
In the finite element solution procedure the streamfunction and velocity components are represented by 
the biquadratic functions @(x, y). 

APPENDIX 11: NOMENCLATURE 

BE backward Euler method 
dimensionless frequency 
dimensionless depth of liquid in trough h 

k thermal conductivity (ML/t3T) 
L length of trough (L) 
N total number of nodes 
N h  

f 

total number of free surface nodes 
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Greek letters 

a 
P 
TJ 
6 
6k 
E 

0, 
P 
V 

71 

0 

7 

Qi 
$ 

Superscripts 

i 
i 
k 
+ 

Subscripts 

A 
B 
m 

4 Y 
0 
1 

S 

total number of pressure nodes 
outward-pointing unit vector for free surface 
inward-pointing unit vector for trough 
outward-pointing unit vector for free surface at contact line 
dimensionless isotropic pressure 
dimensionless heat flux vector 
dimensionless Galerkin residual 
dimensionless distance measured along interface 
unit vector tangent to surface 
dimensionless temperature 
trapezoid rule 
temperatures at x = 0 and x = 4 (T) 
dimensionless time 
dimensionless time at which BE method is switched to TR method 
dimensionless velocity vector 
characteristic velocity defined in equation (7) (L/t) 
dimensionless x- and y-components of velocity vector 
dimensionless position vector for liquid-gas interface 
dimensionless position vector 

thermal difisivity (L2/t) 
thermal coefficient of volumetric expansion, (-8 In planp (l/T) 
bilinear polynomial for finite element method 
unit tensor 
unit vector in direction k 
error specification for time integration 
contact angle 
viscosity (M/Lt) 
momentum difisivity (L2/t) 
dimensionless total stress tensor defined in equation (4) 
surface tension (M/t2) 
dimensionless viscous stress tensor, - [Vv + (VV)~] 
biquadratic polynomial for finite element method 
dimensionless streamfunction 

index for node 
index for pressure node 
index for surface node 
dimensional quantity 

location A; see Figure 2 
location B; see Figure 2 
quantity that moves with the mesh 
standard or characteristic value 
x- and y-directions 
evaluated at wall n = 0 or value for unstretched mesh 
evaluated at wall x = 4 
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